Chapter 4
The Cell: Basic Unit of Life

Cell Theory
- All organisms are made up of cells
- The cell is the basic living unit of organization for all organisms
- All cells come from pre-existing cells...

Biological diversity & unity
- Underlying the diversity of life is a striking unity
 - DNA is universal genetic language
 - Cells are the basic units of structure & function
 - lowest level of structure capable of performing all activities of life

Activities of life
- Most everything you think of a whole organism needing to do, must be done at the cellular level...
 - reproduction
 - growth & development
 - energy utilization
 - response to the environment
 - homeostasis

How do we study cells?
- Microscopes opened up the world of cells
 - Robert Hooke (1665)
 - the 1st cytologist
 - Drawings by Hooke

How do we study cells?
- Microscopes
 - light microscopes
 - electron microscope
 - transmission electron microscopes (TEM)
 - scanning electron microscopes (SEM)
Light microscopes
- 0.2µm resolution
- ~size of a bacterium
- visible light passes through specimen
- can be used to study **live** cells

Electron microscope
- 1950s
- 2.0nm resolution
- 100 times > light microscope
- reveals organelles
- but can only be used on **dead** cells

Transmission electron microscopes
- TEM
 - used mainly to study internal structure of cells
 - aims an electron beam through thin section of specimen
 - rabbit trachea
 - cucumber seed leaf

Scanning electron microscopes
- SEM
 - studying surface structures
 - sample surface covered with thin film of gold
 - beam excites electrons on surface
 - great depth of field = an image that seems 3-D

Isolating organelles
- Cell fractionation
 - separate organelles from cell
 - variable density of organelles
 - ultracentrifuge

Ultracentrifuge
- spins up to 130,000 rpm
 - forces > 1 million X gravity (1,000,000g)
Microcentrifuge
- Biotechnology research
 - study cells at protein & genetic level

Cell characteristics
- All cells:
 - surrounded by a **plasma membrane**
 - have **cytosol**
 - semi-fluid substance within the membrane
 - \(\text{cytoplasm} = \text{cytosol} + \text{organelles} \)
 - contain **chromosomes** which have genes in the form of **DNA**
 - have **ribosomes**
 - tiny "organelles" that make proteins using instructions contained in genes

Types of cells
- **Prokaryotic vs. eukaryotic cells**
 - **Location of chromosomes**
 - **Prokaryotic cell**
 - DNA in **nucleoid** region, without a membrane separating it from the rest of cell
 - **Eukaryotic cell**
 - chromosomes in **nucleus**, membrane-enclosed organelle

Cell types

<table>
<thead>
<tr>
<th></th>
<th>Prokaryotes</th>
<th>Eukaryotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smaller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simpler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most do not have membrane-enclosed organelles</td>
<td></td>
<td>Membrane-enclosed organelles</td>
</tr>
<tr>
<td>Bacteria and archaea</td>
<td></td>
<td>Protists, plants, fungi, animals</td>
</tr>
</tbody>
</table>

Eukaryotic cells
- **Eukaryotic cells are more complex than prokaryotic cells**
 - within **cytoplasm** is a variety of membrane-bounded **organelles**
 - specialized structures in form & function
- **Eukaryotic cells are generally bigger than prokaryotic cells**
Limits to cell size

- **Lower limit**
 - smallest bacteria, mycoplasmas
 - 0.1 to 1.0 micron (µm = micrometer)
 - most bacteria
 - 1-10 microns

- **Upper limit**
 - eukaryotic cells
 - avg. 10-100 microns
 - micron = micrometer = 1/1,000,000 meter
 - diameter of human hair = ~20 microns

What limits cell size?

- **Surface to volume ratio**
 - as cell gets bigger its volume increases faster than its surface area
 - smaller objects have greater ratio of surface area to volume

<table>
<thead>
<tr>
<th>Total surface area</th>
<th>Total volume</th>
<th>Surface to volume ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(height x width x length x number of boxes)</td>
<td>(height x width x length x number of boxes)</td>
<td>(area x volume)</td>
</tr>
<tr>
<td>6</td>
<td>105</td>
<td>750</td>
</tr>
</tbody>
</table>

How to get bigger?

- **Become multi-cellular (cell divides)**

Cell membrane

- **Exchange organelle**
 - **plasma membrane** functions as **selective barrier**
 - allows passage of O_2, nutrients & wastes

Organelles & Internal membranes

- **Eukaryotic cell**
 - internal membranes
 - partition cell into compartments
 - create different local environments
 - compartmentalize functions
 - membranes for different compartments are specialized for their function
 - different structures for specific functions
 - unique combination of lipids & proteins