Chapter 4
The Cell’s Endomembrane System—Endoplasmic Reticulum, Golgi Apparatus, Lysosomes, Peroxisomes, Vacuoles, Vesicles

Overview
- Play key role in synthesis (& hydrolysis) of macromolecules in cell
- Various “players” modify macromolecules for various functions

Endoplasmic Reticulum
- **Function**
 - manufactures membranes & performs many bio-synthesis functions
- **Structure**
 - membrane connected to nuclear envelope & extends throughout cell
 - accounts for 50% membranes in eukaryotic cell
 - rough ER = bound ribosomes
 - smooth ER = no ribosomes

Types of ER
- **Smooth ER function**
 - Factory processing operations
 - many metabolic processes
 - synthesis & hydrolysis
 - enzymes of smooth ER…
 - synthesize lipids, oils, phospholipids, steroids & sex hormones
 - hydrolysis (breakdown) of glycogen (in liver) into glucose
 - detoxify drugs & poisons (in liver)
 - ex. alcohol & barbiturates
 - Factory processing operations
 - produce proteins for export out of cell
 - protein secreting cells
 - packaged into transport vesicles for export

Rough ER function
- Produce proteins for export out of cell
- protein secreting cells
- packaged into transport vesicles for export
Membrane Factory
- Synthesize membrane phospholipids
 - build new membrane
 - as ER membrane expands, bud off & transfer to other parts of cell that need membranes
- Synthesize membrane proteins
 - membrane bound proteins synthesized directly into membrane
 - processing to make glycoproteins

Golgi Apparatus
- Function
 - finishes, sorts, & ships cell products
 - “shipping & receiving department”
 - center of manufacturing, warehousing, sorting & shipping
 - extensive in cells specialized for secretion

Which cells have a lot of Golgi?

Golgi apparatus
- Structure
 - flattened membranous sacs = cisternae
 - look like stack of pita bread
 - 2 sides = 2 functions
 - cis = receives material by fusing with vesicles = “receiving”
 - trans buds off vesicles that travel to other sites = “shipping” (transport)

Golgi processing
- During path from cis to trans, products from ER are modified into final form
 - tags, sorts, & packages materials into transport vesicles
 - Golgi = “UPS headquarters”
 - Transport vesicles = “UPS trucks”
 - delivering packages that have been tagged with their own barcodes

Putting it together...

Lysosomes
- Structure
 - membrane-bounded sac of hydrolytic enzymes that digests macromolecules
 - enzymes & membrane of lysosomes are synthesized by rough ER & transferred to the Golgi
 - only in animal cells
Lysosomes

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>• a little “stomach” for the cell</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

1960 | 1974

1974 Nobel prize: Christian de Duve
Lysosomes discovery in 1960s

Cellular digestion

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lysosomes fuse with food vacuoles</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The Recycler

Fuse with organelles or macromolecules in cytosol to recycle materials

Lysosomal enzymes

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lysosomal enzymes work best at pH 5</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

When things go wrong…

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>• What if a lysosome digestive enzyme doesn’t function?</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sometimes its supposed to work that way…

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Apoptosis = cell death</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Fetal development

syndactyly

6 weeks

15 weeks

Peroxisomes

- Other digestive enzyme sacs
 - in both animals & plants
 - breakdown fatty acids to sugars
 - easier to transport & use as energy source
 - detoxify cell
 - detoxifies alcohol & other poisons
 - produce peroxide (H$_2$O$_2$)
 - must breakdown
 - H$_2$O$_2$ \rightarrow H$_2$O

Vacuoles & vesicles

- Function
 - little “transfer ships”
 - Food vacuoles
 - phagocytosis, fuse with lysosomes
 - Contractile vacuoles
 - in freshwater protists, pump excess H$_2$O out of cell
 - Central vacuoles
 - in many mature plant cells

Vacuoles in plants

- Functions
 - storage
 - stockpiling proteins or inorganic ions
 - depositing metabolic byproducts
 - storing pigments
 - storing defensive compounds against herbivores
 - selective membrane
 - control what comes in or goes out

Putting it all together…