Chapter 6
Energy and ATP!

Energy needs of life
- Organisms are **endergonic** systems
 - What do we need energy for?
 - synthesis (biomolecules)
 - reproduction
 - active transport
 - movement
 - temperature regulation

Flow of energy through life
- Life is built on chemical reactions

Chemical reactions of life
- Metabolism
 - **forming bonds** between molecules
 - dehydration synthesis
 - anabolic reactions
 - **breaking bonds** between molecules
 - hydrolysis
 - catabolic reactions

Examples
- dehydration synthesis
 ![Dehydration synthesis example](image)
- hydrolysis
 ![Hydrolysis example](image)

Can you please pass the salt?
Chemical reactions & energy
- Some chemical reactions release energy
 - exergonic
 - digesting polymers
 - hydrolysis = catabolism
- Some chemical reactions require input of energy
 - endergonic
 - building polymers
 - dehydration synthesis = anabolism

Endergonic vs. Exergonic reactions
- exergonic
 - energy released
- endergonic
 - energy invested

Energy & life
- Organisms require energy to live
 - where does that energy come from?
 - often via coupling exergonic reactions (releasing energy) with endergonic reactions (needing energy)

Living economy
- Fueling the economy
 - eat high energy organic molecules (food)
 - break them down = catabolism (digest)
 - capture energy in form cell can use
- Need an energy currency
 - a way to pass energy around

ATP
- Adenosine Triphosphate
 - modified nucleotide
 - adenine + ribose + P\textsubscript{i} → AMP
 - AMP + P\textsubscript{i} → ADP
 - ADP + P\textsubscript{i} → ATP

Why does ATP store energy?
- Each P\textsubscript{i} group more difficult to add
 - a lot of stored energy in each bond
 - most stored in 3rd P\textsubscript{i}
 - ΔG = -7.3 kcal/mole
- Close packing of negative P\textsubscript{i} groups
 - spring-loaded

The instability of its P bonds makes ATP an excellent energy donor
How does ATP transfer energy?

- **Phosphorylation**
 - when ATP does work, it transfers its 3rd P_i to other molecules
 - ATP \rightarrow ADP
 - releases energy
 - $\Delta G = -7.3 \text{ kcal/mole (-30kJ/mol)}$
 - it destabilizes the other molecule

An example of Phosphorylation...

- **Building polymers from monomers**
 - need ATP for energy & to take the water out

Another example of Phosphorylation...

- **The first steps of cellular respiration**
 - beginning the breakdown of glucose \rightarrow ATP

ATP / ADP cycle

- Can’t store ATP for long periods
 - too reactive
 - transfers P_i too easily
 - only short term energy storage
 - carbs & fats are long term energy storage

Where is ATP needed?

- Cleaving ATP \rightarrow ADP allows myosin head to bind to actin filament.