Chapter 13
Viral Genetics

Influenza: 1918 Epidemic
30-40 million deaths world-wide

Emerging Viruses
- Viruses that “jump” host
 - switch species
 - Ebola, SARS, bird flu, hantavirus
 - The Coming Plague by Laurie Garrett

Smallpox
- Eradicated in 1976
 - vaccinations ceased in 1980
 - at risk population?

A Sense of Size
- Comparing size
 - eukaryotic cell
 - bacterium
 - virus
What is a virus? Is it alive?
- DNA or RNA enclosed in a protein coat
- Viruses are not cells
- Extremely tiny
 - need an electron microscope to see
 - smaller than ribosomes
 - ~20–50 nm

1st discovered in plants (1800s)
- tobacco mosaic virus
- couldn’t filter out
- couldn’t reproduce on media like bacteria

Variation in Viruses
- A package of genes in transit from one host cell to another

"A piece of bad news wrapped in protein"
- Peter Medawar

Variation in Viruses
- Parasites
 - lack enzymes for metabolism
 - lack ribosomes for protein synthesis
 - need host “machinery”

Viral Genomes
- Viral nucleic acids
 - DNA
 - double-stranded
 - single-stranded
 - RNA
 - double-stranded
 - single-stranded
 - Linear or circular
 - smallest viruses have only 4 genes, while largest have several hundred

Viral Protein Coat
- Capsid
 - crystal-like protein shell
 - 1-2 types of proteins
 - many copies of same protein

Viral Envelope
- Lipid bilayer membranes cloaking viral capsid
 - envelopes are derived from host cell membrane
 - glycoproteins on surface

Table 18.1 Classes of Animal Viruses, Grouped by Type of Nucleic Acid

Viral Envelope
- Lipid bilayer membranes cloaking viral capsid
 - envelopes are derived from host cell membrane
 - glycoproteins on surface
Generalized Viral Lifecycle

- **Entry**
 - Virus DNA/RNA enters host cell
- **Assimilation**
 - Viral DNA/RNA takes over host
 - Reprograms host cell to copy viral nucleic acid & build viral proteins
- **Self assembly**
 - Nucleic acid molecules & capsomeres then self-assemble into viral particles
 - Exit cell

Symptoms of Viral Infection

- Link between infection & symptoms varies
 - Kills cells by lysis
 - Cause infected cell to produce toxins
 - Fever, aches, bleeding...
 - Viral components may be toxic
 - Envelope proteins
- Damage?
 - Depends...
 - Lung epithelium after the flu is repaired
 - Nerve cell damage from polio is permanent

Viral Hosts

- **Host range**
 - Most types of virus can infect & parasitize only a limited range of host cells
 - Identify host cells via “lock & key” fit between proteins on viral coat & receptors on host cell surface
 - Broad host range
 - Rabies = can infect all mammals
 - Narrow host range
 - Human cold virus = only cells lining upper respiratory tract of humans
 - HIV = binds only to specific white blood cells

Bacteriophages

- **Viruses that infect bacteria**
 - Ex. Phages that infect *E. coli*
 - Lambda phage
 - 20-sided capsid head encloses DNA
 - Protein tail attaches phage to host & injects phage DNA inside

Bacteriophage Lifecycles

- **Lytic**
 - Reproduce virus in bacteria
 - Release virus by rupturing bacterial host
- **Lysogenic**
 - Integrate viral DNA into bacterial DNA
 - Reproduce with bacteria

Lytic Lifecycle of Phages
Lysogenic Lifecycle of Phages

- The phage injects its DNA into the bacterial chromosome to become a prophage.
- Bacterial cell continues to divide and synthesize new phage DNA and proteins.
- When cell divides, prophage DNA replicates and is transmitted to daughter cells.
- Occasionally, a prophage is extricated, following a lytic cycle.
- New phage DNA and proteins are synthesized and assembled into phages.
- The cell lyses, releasing phages.

Defense Against Viruses

- Bacteria have defenses against phages:
 - bacterial mutants with receptors that are no longer recognized by a phage
 - natural selection favors these mutants
 - bacteria produce **restriction enzymes**
 - recognize & cut up foreign DNA

- It’s an escalating war!
 - natural selection favors phage mutants resistant to bacterial defenses

RNA Viruses

- **Retroviruses**
 - have to copy viral RNA into host DNA
 - enzyme = **reverse transcriptase**
 - RNA \rightarrow DNA \rightarrow mRNA
 - host’s RNA polymerase now transcribes viral DNA into viral mRNA
 - mRNA codes for viral components
 - host’s ribosomes produce new viral proteins

- **HIV**
 - **Human ImmunoDeficiency Virus**
 - causes AIDS
 - **Acquired ImmunoDeficiency Syndrome**
 - opportunistic diseases
 - envelope with glycoproteins for binding to specific WBC
 - capsid containing 2 RNA strands & 2 copies of reverse transcriptase

HIV Infection

- HIV enters host cell
 - macrophage & CD4 WBCs
 - cell-surface receptor
 - **reverse transcriptase** synthesizes double stranded DNA from viral RNA
 - high mutation rate
 - Transcription produces more copies of viral RNA
 - translated into viral proteins
 - proteins & vRNA self-assemble into virus particles
 - released from cell by “budding” or by lysis

HIV Treatments

- inhibit vRNA replication
 - AZT
 - thymine mimic
 - protease inhibitors
 - stops cleavage of polyprotein into capsid & enzyme proteins

- **Combination Therapy**
 - Replication (AZT) HIV RNA
 - Protease inhibitors
 - Envelope proteins
 - Critical protein
 - Vaccine or Drug Therapy
 - Vaccine incorporating defective nef protein
Potential HIV treatments
- Block receptors
 - chemokines
 - bind to & block cell-surface receptors
 - 11% of Caucasians have mutant receptor allele
- Block vRNA replication
 - CAF replication factor

Cancer Viruses
- Viruses appear to cause certain human cancers
 - hepatitis B virus
 - linked to liver cancer
 - Epstein-Barr virus = infectious mono
 - linked to lymphoma
 - papilloma viruses
 - linked with cervical cancers
 - HTLV-1 retrovirus
 - linked to adult leukemia

Cancer Viruses
- Transform cells into cancer cells after integration of viral DNA into host DNA
 - carry oncogenes that trigger cancerous characteristics in cells
 - version of human gene that normally controls cell cycle or cell growth
- Most tumor viruses probably cause cancer only in combination with other mutagenic events

Prions
- Misfolded proteins
 - infectious
 - make plaques (clumps) & holes in brain as neurons die

Protein as Information Molecule?!
- Prions challenge Central Dogma
 - transmit information to other proteins

Stanley Prusiner
UC School of Medicine
1982 | 1997