Why study bacterial genetics?
- It's an easy place to start
 - history
 - we know more about it
 - systems better understood
 - simpler genome
 - good model for control of genes
 - build concepts from there to eukaryotes
 - bacterial genetic systems are exploited in biotechnology

Bacteria
- Bacteria review
 - one-celled organisms
 - prokaryotes
 - reproduce by mitosis
 - binary fission
 - rapid growth
 - generation every ~20 minutes
 - 10^8 (100 million) colony overnight!
 - dominant form of life on Earth
 - incredibly diverse

Bacteria as Pathogens
- Disease-causing microbes
 - plant diseases
 - wilts, fruit rot, blights
 - animal diseases
 - tooth decay, ulcers
 - anthrax, botulism
 - plague, leprosy, “flesh-eating” disease
 - STDs: gonorrhea, chlamydia
 - typhoid, cholera
 - TB, pneumonia
 - lyme disease

Bacteria as Beneficial (& necessary)
- Life on Earth is dependent on bacteria
 - decomposers
 - recycling of nutrients from dead to living
 - nitrogen fixation
 - only organisms that can fix N from atmosphere
 - needed for synthesis of proteins & nucleic acids
 - plant root nodules
 - help in digestion (E. coli)
 - digest cellulose for herbivores
 - cellulase enzyme
 - produce vitamins K & B$_{12}$ for humans
 - produce foods & medicines
 - from yogurt to insulin

Bacterial Diversity
- Borrelia burgdorferi
 - Lyme disease
- Treponema pallidum
 - Syphilis
- Escherichia coli O157:H7
 - Hemorrhagic E. coli
- Enterococcus faecium
 - skin infections
Bacterial Genome
- Single circular chromosome
 - haploid
 - naked DNA
 - no histone proteins
 - ~4 million base pairs
 - ~4300 genes
 - 1/1000 DNA in eukaryote

No Nucleus!
- No nuclear membrane—prokaryotic!
 - chromosome in cytoplasm
 - transcription & translation are coupled together
 - no processing of mRNA
 - no introns
 - but ‘Central Dogma’ still applies
 - use same genetic code

Binary Fission
- Replication of bacterial chromosome
- Asexual reproduction
 - offspring genetically identical to parent
 - where does variation come from?

Variation in Bacteria
- Sources of variation:
 - spontaneous mutation
 - transduction
 - conjugation
 - transformation
 - plasmids
 - DNA fragments

Spontaneous Mutation
- Spontaneous mutation is a significant source of variation in rapidly reproducing species
- Example: *E. coli*
 - human colon (large intestines)
 - spontaneous mutations
 - for 1 gene, only ~1 mutation in 10 million replications
 - each day, ~2,000 bacteria develop mutation in that gene
 - but consider all 4300 genes, then:
 - 4300 x 2000 = 9 million mutations per day per human host!

Transduction
- Phage viruses (or some other vector) carry bacterial genes from one host to another.
Conjugation
- Direct transfer of DNA between 2 bacterial cells that are temporarily joined
 - results from presence of F plasmid with F factor
 - F for “fertility” DNA
 - E. coli “male” extends sex pilii, attaches to female bacterium
 - cytoplasmic bridge allows transfer of DNA

Transformation
- Bacteria are opportunists
 - pick up naked foreign DNA wherever it may be hanging out
 - have surface transport proteins that are specialized for the uptake of naked DNA
 - import bits of chromosomes from other bacteria
 - incorporate the DNA bits into their own chromosome
 - express new gene
 - form of recombination

Swapping DNA
- Genetic recombination by trading DNA

Plasmids
- small supplemental circles of DNA
 - 5000 - 20,000 base pairs
 - self-replicating
 - carry extra genes
 - 2-30 genes
 - can be exchanged between bacteria
 - rapid evolution
 - antibiotic resistance
 - can be imported from environment

Plasmids & Antibiotic Resistance
- Resistance is futile?
 - 1st recognized in 1950s in Japan
 - bacterial dysentery not responding to antibiotics
 - worldwide problem now
 - resistant genes are on plasmids that are swapped between bacteria

Transferring Resistance Genes
- 1. Plasmid vectors
- 2. Plasmid by viral delivery
- 3. Chromosomal transfer

It was on a short-cut through the hospital kitchens that Albert was first approached by a member of the Antibiotic Resistance.
Biotechnology
- Used to insert new genes into bacteria
 - example: pUC18
 - engineered plasmid used in biotech

pUC18
- 2666 bp
- antibiotic resistance gene on plasmid is used as a selective agent

Copy DNA
- **Plasmids**
 - small, self-replicating circular DNA molecules
 - insert DNA sequence into plasmid
 - **vector** = “vehicle” into organism
 - **transformation**
 - insert recombinant plasmid into bacteria
 - bacteria make lots of copies of plasmid
 - grow recombinant bacteria on agar plate
 - clone of cells = lots of bacteria
 - production of many copies of inserted gene

- **DNA** → **RNA** → **protein** → **trait**

Recombinant Plasmid
- Antibiotic resistance genes as a **selectable marker**
- Restriction sites for splicing in gene of interest

Selectable marker
- Plasmid has both “added” gene & antibiotic resistance gene
- If bacteria don’t pick up plasmid then die on antibiotic plates
- If bacteria pick up plasmid then survive on antibiotic plates
- selecting for successful transformation

Selection for Plasmid Uptake
- Ampicillin becomes a selecting agent
 - only bacteria with the plasmid will grow on **amp plate**

- all bacteria grow
- only transformed bacteria grow

LB plate
- **LB/amp plate**

LacZ is one Screening System
- Make sure inserted plasmid is recombinant plasmid
 - LacZ gene on plasmid produces digestive enzyme
 - lactose (X-gal) → blue
 - blue colonies
 - insert foreign DNA into LacZ gene breaks gene
 - lactose (X-gal) X
 - white colonies
 - **white** bacterial colonies have recombinant plasmid when grown on a medium containing lactose

Need to Screen...
- Need to make sure bacteria have recombinant plasmid
Amp Selection & LacZ Screening

- **gene of interest**
- **LacZ gene**
- **amp resistance**

- Ampicillin in media
- LB/amp
- LB/amp/Xgal (lac)

Application of Recombinant DNA

- Combining sequences of DNA from 2 different sources into 1 DNA molecule
 - Often from different species
 - Human insulin gene in E. coli (Humulin)
 - Frost resistant gene from Arctic fish in strawberries
 - “Roundup-ready” bacterial gene in soybeans
 - BT bacterial gene in corn
 - Jellyfish glow gene in Zebra “Glofish” – GFP

Development of GFP 1961, 1994 | 2008

- Shimomura, Chalfie, Tsien
 - Discovery, isolation, and purification of GFP and many fluorescent analogs

Bacterial Genetics

- Regulation of Gene Expression

Bacterial Metabolism

- Bacteria need to respond quickly to changes in their environment
 - If have enough of a product, need to stop production
 - Why? Waste of energy to produce more
 - How? Stop production of synthesis enzymes
 - If find new food/energy source, need to utilize it quickly
 - Why? Metabolism, growth, reproduction
 - How? Start production of digestive enzymes

Reminder: Regulation of Metabolism

- Feedback inhibition
 - Product acts as an allosteric inhibitor of 1st enzyme in tryptophan pathway

= inhibition
Another Way to Regulate Metabolism

- **Gene regulation**
 - block transcription of genes for all enzymes in tryptophan pathway
 - saves energy by not wasting it on unnecessary protein synthesis

- **Gene Regulation in Bacteria**
 - Control of gene expression enables individual bacteria to adjust their metabolism to environmental change
 - Cells vary amount of specific enzymes by regulating gene transcription
 - turn genes on or turn genes off
 - ex. if you have enough tryptophan in your cell then you don't need to make enzymes used to build tryptophan
 - waste of energy
 - turn off genes which codes for enzymes

So how can genes be turned off?

- **First step in protein production?**
 - transcription
 - stop RNA polymerase!

- **Repressor protein**
 - binds to DNA near promoter region blocking RNA polymerase
 - binds to operator site on DNA
 - blocks transcription

Genes Grouped Together

- **Operon**
 - genes grouped together with related functions
 - ex. enzymes in a synthesis pathway
 - promoter = RNA polymerase binding site
 - single promoter controls transcription of all genes in operon
 - transcribed as 1 unit & a single mRNA is made
 - operator = DNA binding site of regulator protein

Repressor Protein Model

Repressible Operon: Tryptophan

Synthesis Pathway Model When excess tryptophan is present, binds to tryp repressor protein & triggers repressor to bind to DNA. (blocks [represses] transcription)

Operon:

The operator, promoter & genes they control serve as a model for gene regulation

Repressor protein turns off gene by blocking RNA polymerase binding site.
Tryptophan Operon

What happens when tryptophan is present? Don’t need to make tryptophan-building enzymes!

DNA

mRNA

Protein

Tryptophan

Active repressor

DNA

mRNA

Protein

(m) Tryptophan present, repressor active, operon off

Tryptophan binds allosterically to regulatory protein.

Inducible Operon: Lactose

Digestive pathway model

When lactose is present, binds to lac repressor protein & triggers repressor to release DNA (induces transcription)

RNA polymerase

DNA

gene1

gene2

gene3

gene4

Lactose

Lactose binds allosterically to regulatory protein.

Operon Summary

- Repressible operon
 - usually functions in anabolic pathways
 - synthesizing end products
 - when end product is present in excess, cell allocates resources to other uses

- Inducible operon
 - usually functions in catabolic pathways
 - digesting nutrients to simpler molecules
 - produce enzymes only when nutrient is available
 - cell avoids making proteins that have nothing to do, cell allocates resources to other uses

Lactose Operon

What happens when lactose is present? Need to make lactose-digesting enzymes!

DNA

mRNA

Protein

β-Galactosidase

Peroxidase

Transacylase

Alloactose (inducer)

Inactive repressor

(b) Lactose present, repressor inactive, operon on

Lactose binds allosterically to regulatory protein.

Jacob & Monod: lac Operon 1961 | 1965

- Francois Jacob & Jacques Monod
 - first to describe operon system
 - coined the phrase “operon”

Any Questions??